

VNU HANOI UNIVERSITY OF SCIENCE REGIONAL CLIMATE MODELING AND CLIMATE CHANGE

Climate Modeling

Chapter 3. Fundamental analysis of climate data Chapter 4. Regional climate change projections

Tan Phan-Van VNU Hanoi University of Science

Lecture 6

3.1 Statistical analysis of four-dimensional atmospheric data

Lecture 7

3.2 Statistical analysis of global climate projection data

Lecture 8

4.1 Statistical downscaling

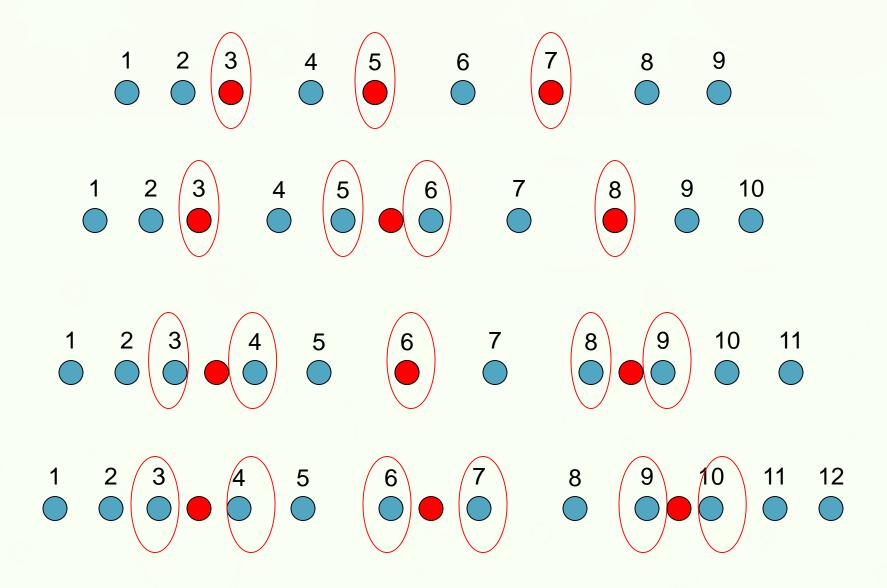
Lecture 6:

3.1 Statistical analysis of four-dimensional atmospheric data

Two approaches:

- Descriptive statistics: Relates to the organization and summarization of data
 - Pre- vs Post-Processing
 - Observed vs Modeled data
 - Station based vs Gridded data
 - Predicted vs Reanalysis data
 - Surface vs Satellite Observation
- Inferential statistics: Methods and procedures used to draw conclusions regarding underlying processes that generate the data
 - Physical understanding of atmospheric phenomena
 - Uncertainty analysis

- Elements of Probability:
 - Events: An event is a set, or class, or group of possible uncertain outcomes
 - Rain (heavy rain/hot weather/cold weather,...) might or might not on a given day in Hanoi
 - Probability of events: The probability of an event is a number describing the chance that the event will happen
 - The probability of an event is the likelihood of that event occuring
 - The probability of event A is approximately the ratio between the number of times that A is observed and the number of repetitions of the experiment
 - $\bullet \quad 0 \le \mathbf{P}(\mathbf{A}) \le 1$
 - If A is certain to happen then P(A) = 1, if A cannot possibly happen then P(A) = 0


- Elements of Probability:
 - Conditional Probability: A conditional probability is the probability of an event, given some other event has already occurred
 - Probability of coastal wind speeds above some threshold, given that a typhoon makes landfall nearby
 - Frequency: is the number of times that event occurs
 - Number of rainy days in the year
 - Relative Frequency: is the ratio between the number of times that event occurs and the number of repetitions of the experiment
 - Number of rainy days divides to the number of observed days
 - Relative Frequency is usually used to estimate the probability of events
 - Cumulative relative frequency: is the accumulation of the previous relative frequencies

- Statistical characteristics:
 - Mean:

$$\overline{x} = \frac{1}{n} \mathop{\text{a}}\limits_{i=1}^{n} x_i$$

- Standard Deviation: $S_x = \frac{1}{n-1} \mathop{ a}\limits_{i=1}^n (x_i - \overline{x})^2$
- Percentiles: A percentile is a number (of data series) where a certain percentage of scores fall below that number
 - The 25th percentile is called the first quartile (q_{25})
 - The 50th percentile is the median (Me), that's the second quartile
 - The 75th percentile is called the third quartile (q_{75})
 - The difference between the third and first quartiles is the interquartile range (IQR)
 - Other percentiles usually used: q_{01} , q_{05} , q_{10} , q_{90} , q_{95} , q_{99} which are the 1th, 5th, 10th, 90th, 95th, 99th percentiles

How to find the first, second (Me) and third quantiles?

Calculating the percentile

					Normal States and States							
Origin data												
x _i	x ₁	x ₂	•••					X _{n-1}	x _n			
Control data												
Sorted data												
x _(i)	X ₍₁₎	X ₍₂₎	•••					X _(n-1)	X _(n)			
i	1	2	•••		;	0.5		n-1	n			
<i>p</i> _i	p_1	p ₂	• • •	$p_i =$	= 100 <u>i -</u>	$\frac{0.3}{n}$ —		p _{n-1}	p _n			

For a given
$$p_i$$
: $i = \frac{np_i}{100} + 0.5$

If *i* is an integer, $x_{(i)}$ is simply the p^{th} percentile. If *i* is not an integer, we can interpolate as follows:

- let k = the integer part of i, (i.e., if i = 10.375, then k = 10)
- let f = the fractional part of i, (i.e., if i = 10.375, then f = 0.375)
- let $x_{(int)}$ = the value we want to interpolate between $x_{(k)}$ and $x_{(k+1)}$: $x_{(int)} = (1-f) x_{(k)} + f x_{(k+1)}$ is the pth percentile

Statistical characteristics:

Orrelation Coefficient between two data series:

Origin data												
X _i	x ₁	x ₂	• • •		x _{n-1}	x _n	$\frac{1}{x}$					
y _i	У ₁	y ₂	•••		У _{п-1}	y _n	\overline{y}					
$\mathbf{x'_i} = \mathbf{x_i} - \frac{-}{\chi}$	x' ₁	x'2	•••		x' _{n-1}	x'n	$\overset{n}{\overset{n}{}}(x_i-\overline{x})^2$					
$y'_i = y_i - \frac{-}{v}$	У' ₁	y'2	•••		y' _{n-1}	y'n	$\overset{i=1}{$					
x' _i y' _i	x' ₁ y' ₁	x' ₂ y' ₂	•••		x' _{n-1} y' _{n-1}	x' _n y' _n	$\overset{n}{\overset{n}{\underset{i=1}{\overset{n}{\overset{n}{\overset{n}{\overset{n}{\overset{n}{\overset{n}{\overset{n}{$					

- Statistical characteristics:
 - Correlation Matrix
 - Let $X_1, X_2, ..., X_m$ be *m* variables
 - Let r_{jk}, j,k=1,2,..., m, be correlation coefficients between X_j, X_k
 - The correlation matrix is denoted by

$$(R) = \begin{matrix} \hat{\mathcal{R}} & r_{11} & r_{12} & \dots & r_{1m} & \hat{\mathbf{n}} \\ \hat{\boldsymbol{\zeta}} & r_{21} & r_{22} & \dots & r_{2m} & \hat{\mathbf{n}} \\ \hat{\boldsymbol{\zeta}} & & & & & & \\ \hat{\boldsymbol{\zeta}} & & & & & & & \\ \hat{\boldsymbol{\zeta}} & & & & & & & & \\ \hat{\boldsymbol{\zeta}} & & & & & & & & & \\ \hat{\boldsymbol{\zeta}} & r_{m1} & r_{m2} & \dots & r_{mm} & & \\ \hat{\boldsymbol{\zeta}} & & & & & & & \\ \hat{\boldsymbol{\zeta}} & & & & & & & \\ \hat{\boldsymbol{\zeta}} & & & & & & & \\ \hat{\boldsymbol{\zeta}} & & & & & & & \\ \hat{\boldsymbol{\zeta}} & & & & & & & \\ \hat{\boldsymbol{\zeta}} & & & & & & & \\ \hat{\boldsymbol{\zeta}} & & & & & & & \\ \hat{\boldsymbol{\zeta}} & & & & & & & \\ \hat{\boldsymbol{\zeta}} & & & & & \\ \hat{\boldsymbol{\zeta}} & & & & & & \\ \hat{\boldsymbol{\zeta}} & & & & & & \\ \hat{\boldsymbol{\zeta}} & & & & & \\ \hat{\boldsymbol{\zeta}} & & & & & & \\ \hat{\boldsymbol{\zeta}} & & & \\ \hat{\boldsymbol{\zeta}} & & & & \\ \hat{\boldsymbol{\zeta} & & & \\ \hat{\boldsymbol{\zeta}} & & & \\ \hat{\boldsymbol{\zeta}} & & & & \\ \hat{\boldsymbol{\zeta} & & & \\ \hat{\boldsymbol{\zeta}} & & & & \\ \hat{\boldsymbol{\zeta}} & & & & \\ \hat{\boldsymbol{\zeta} & & & & \\ \hat{\boldsymbol{\zeta} & & & \\ \hat{\boldsymbol{\zeta}} & & & & \\ \hat{\boldsymbol{\zeta} &$$

• $r_{11} = r_{22} = \dots = r_{mm}; r_{jk} = r_{kj}$

Important atmospheric variables

- Temperature: T(xlon,ylat,plev,t), in C or K
- Precipitation: P(xlon,ylat,t) or R(xlon,ylat,t), in mm/day or mm/month
- Mean Sea Level Pressure: PMSL(xlon,ylat,t), in mb, hPa
- Geopotential high: HGT(xlon,ylat,plev,t), in m, km
- Surface Wind: U10m(xlon,ylat,t), V10m(xlon,ylat,t), in m/s
- Wind: U(xlon,ylat,plev,t), V(xlon,ylat,plev,t), W(xlon,ylat,plev,t), in m/s
- Humidity(xlon,ylat,plev,t):
 - Specific humidity (q), Mixing Ratio: g/kg
 - Relative Humidity: % or -

Analysis of horizontal means

- Let *F*(*xlon*, *ylat*, *plev*, *t*) be a certain variable
- Given a certain *plev*, say 1000mb, or 850mb,...
- Given *xlon*, *ylat* for a specific area or whole globe
- Calculating mean values of F(xlon_i, ylat_j, plev,t) at each point (station or grid box) (xlon_i, ylat_j) over entire time series t₁, t₂, ..., t_n:

$$F(xlon_i, ylat_j, plev) = \frac{1}{n} \mathop{\text{a}}_{k=1}^n F(xlon_i, ylat_j, plev, t_k)$$

where i=1,N; j=1,M are number of stations or of grid box in the interested area; t_k can be chosen depending on objectives of analysis

- Annual mean, seasonal mean, monthly mean,...
- Solution Long term climatology
- €€}

. . .

Analysis of horizontal means

- Annual mean fields
- Monthly mean fields
- Zonal Means
- Meridional Means
- Time-Zonal cross section
- Time-Meridional cross section
- Correlation Maps

Analysis of vertical means

- Mean Profiles
- Zonal-Vertical cross section
- Meridional-Vertical cross section

Time series Analysis

- Changes vs Variabilites
- Anomalous time series
- Trend Analysis
- Periodic Analysis

Examples and Homeworks

- Reanalysis data: Era Interim
- Station data: Rainfall and Temperature
- Data structures: Text files, NetCDF
- Calculations: Fortran Programs
- Display, plot, graphics: Grads, EXCEL
- Login to the Cluster Linux system at HUS: